
Associate

Earning the App Development with Swift Associate certification demonstrates knowledge of key computing
concepts and a solid foundation in programming with Swift and SwiftUI. They’ll demonstrate knowledge of the
impact of computing and apps on society, economies, and cultures while exploring app development.

Planning and Design
1.1. Summarize the design cycle	

	 1.1.1. Brainstorm, plan, prototype, evaluate

1.2.	Summarize how sensitive data can be protected and
compromised	

	 1.2.1. Sharing personal and application information

	 1.2.2. Security challenges

	 1.2.3.	Legal, ethical and socioeconomic impacts

1.3.	Assess a visual design with accessibility in mind	

XCode Project Navigation
2.1.	Differentiate between basic file types	

2.2. After an asset has been imported, recognize available
assets and how they are used in a project	

2.3. Import and/or use an asset	

2.4. Select the appropriate actions to configure
different areas of the user interface	

Objective Domains

Swift Language Usage
3.1. Write, call and/or evaluate the execution of functions	

	 3.1.1. Evaluate the use of argument labels, parameters
	 and returns

3.2. Calculate the results when using various operators	

3.3. Create and evaluate structures	

	 3.3.1. Declare the properties of a structure

	 3.3.2. Initialize the properties of a structure

	 3.3.3. Define methods

	 3.3.4. Create an instance of a structure

	 3.3.5. Use an instance of a structure

WITH SWIFT
Associate

App Development
with Swift

Associate

App Development
with Swift

© 2025 Certiport, Inc. Certiport and the Certiport logo are registered trademarks of Certiport Inc. Apple, Xcode, Swift and SwiftUI are trademarks of Apple Inc., registered in the U.S. and other countries and regions.

Swift Language Usage (Continued)
3.4. Create and manipulate arrays	

	 3.4.1. Declare and/or initialize an array with values

	 3.4.2. Identify and/or modify an array element using its index

	 3.4.3. Use and/or evaluate array properties and/or methods

3.5. Demonstrate how to control the flow of execution	

	 3.5.1. Create, analyze and predict loop structures
	 and their results

	 3.5.2. Create and interpret the outcome of conditional
	 statements

3.6. Declare and/or evaluate constants and variables of
different data types	

	 3.6.1. Differentiate between constants and variables

	 3.6.2. Apply type inference

	 3.6.3. Use explicit typing

3.7. Use the appropriate naming syntax	

	 3.7.1. Use appropriate camel casing

	 3.7.2. Apply Swift identifier rules

View Building with SwiftUI
4.1. Differentiate between imperative and declarative
programming	

4.2. Create Content Views using Text, Image, Shape,
and/or Color 	

4.3. Implement Modifiers including, but not limited to,
.padding, .background, .frame, .foregroundColor, .font,
and .resizable 	

4.4. Create Container Views (HStack, VStack, ZStack, Spacer)
and arrange Views inside of Stack Views 	

4.5. Explain the View hierarchy produced by a program 	

4.6. Create and/or apply Interactive Views including,
but not limited to, Button, TextField, Slider, and Toggle 	

4.7. Use @State Property Wrapper to control the
appearance of a View

Debugging
5.1. Differentiate between syntax and run-time errors when
building and running an app	

5.2. Interpret error messages

